Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 249: 118310, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331154

RESUMO

Organophosphorus (OP) insecticides are widely used for on-field pest control, constituting about 38% of global pesticide consumption. Insecticide tolerance has been recorded in microorganisms isolated from the contaminated soil. However, the cross-tolerance of laboratory-enriched cultures remains poorly understood. A chlorpyrifos tolerant (T) strain of Anabaena sp. PCC 7119 was developed through continuous enrichment of the wild strain (W). The cross-tolerance of the T strain to the OP insecticide dimethoate was assessed by measuring photosynthetic performance, key enzyme activities and degradation potential. The presence of dimethoate led to a significant reduction in the growth and pigment content of the W strain. In contrast, the T strain demonstrated improved growth and metabolic performance. Chl a and carotenoids were degraded faster than phycobiliproteins in both strains. The T strain exhibited superior photosynthetic performance, metabolic efficiency and photosystem functions, than of W strain, at both the tested dimethoate concentrations (100 and 200 µM). The treated T strain had more or less a normal OJIP fluorescence transient and bioenergetic functions, while the W strain showed a greater fluorescence rise at ≤ 300 µs indicating the inhibition of electron donation to PS II, and at 2 ms due to reduced electron release beyond QA. The T strain had significantly higher levels of esterase and phosphatases, further enhanced by insecticide treatment. Dimethoate degradation efficiency of the T strain was significantly higher than of the W strain. T strain also removed chlorpyrifos more efficiently than W strain at both the tested concentrations. The BCFs of both chlorpyrifos and dimethoate were lower in the T strain compared to the W strain. These findings suggest that the enriched strain exhibits promising results in withstanding dimethoate toxicity and could be explored for its potential as a bioremediating organism for OP degradation.


Assuntos
Anabaena , Clorpirifos , Dimetoato , Inseticidas , Clorpirifos/toxicidade , Dimetoato/toxicidade , Anabaena/efeitos dos fármacos , Inseticidas/toxicidade , Fotossíntese/efeitos dos fármacos
2.
Plant Sci ; 334: 111769, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37328072

RESUMO

Rice is an important grain crop of Asian population. Different fungal, bacterial and viral pathogens cause large reduction in rice grain production. Use of chemical pesticides, to provide protection against pathogens, has become incomplete due to pathogens resistance and is cause of environmental concerns. Therefore, induction of resistance in rice against pathogens via biopriming and chemopriming with safe and novel agents has emerged on a global level as ecofriendly alternatives that provide protection against broad spectrum of rice pathogens without any significant yield penalty. In the past three decades, a number of chemicals such as silicon, salicylic acid, vitamins, plant extract, phytohormones, nutrients etc. have been used to induce defense against bacterial, fungal and viral rice pathogens. From the detailed analysis of abiotic agents used, it has been observed that silicon and salicylic acid are two potential chemicals for inducing resistance against fungal and bacterial diseases in rice, respectively. However, an inclusive evaluation of the potential of different abiotic agents to induce resistance against rice pathogens is lacking due to which the studies on induction of defense against rice pathogens via chemopriming has become disproportionate and discontinuous. The present review deals with a comprehensive analysis of different abiotic agents used to induce defense against rice pathogens, their mode of application, mechanism of defense induction and the effect of defense induction on grain yield. It also provides an account of unexplored areas, which might be taken into attention to efficiently manage rice diseases. DATA AVAILABILITY STATEMENT: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.


Assuntos
Mariposas , Oryza , Animais , Resistência à Doença , Oryza/microbiologia , Silício , Ácido Salicílico , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
3.
Life (Basel) ; 12(10)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36294971

RESUMO

The exchange of CO2 between the air-water interfaces of estuaries is crucial from the perspective of the global carbon cycle and climate change feedback. In this regard, we evaluated the air-water CO2 exchanges in two major estuaries-the Mahanadi estuary (ME) and the Dhamra estuary (DE) in the northern part of the Bay of Bengal, India. Biogeochemical properties of these estuarine waters were quantified in three distinct seasons, namely, pre-monsoon (March to May), monsoon (June to October), and post-monsoon (November to February). The significant properties of water, such as the water temperature, pH, salinity, nutrients, dissolved oxygen, chlorophyll-a (chl a), and photosynthetic pigment fluorescence of phytoplankton, were estimated and correlated with CO2 fluxes. We found that the ME acted as a source of CO2 fluxes in the monsoon and post-monsoon, while DE acted as a sink during the monsoon. The stepwise regression model showed that the fluxes were primarily driven by water temperature, pH, and salinity, and they correlated well with the phytoplankton characteristics. The chl a content, fluorescence yield, and phycobilisomes-to-photosystem II fluorescence ratios were major drivers of the fluxes. Therefore, for predicting air-water CO2 exchanges precisely in a large area over a seasonal and annual scale in the estuaries of the Bay of Bengal, India, critical key parameters such as water temperature, pH, salinity, chl a, and fluorescence yield of phytoplankton should be taken into consideration. However, the responses of phytoplankton, both in terms of production and CO2 capture, are critical research areas for a better understanding of air-water CO2 exchanges in coastal ecology under climate change scenarios.

4.
Planta ; 255(6): 113, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35503188

RESUMO

MAIN CONCLUSION: Rice is attacked by an armada of pathogens. Present review provides a critical evaluation of the potential of different biotic agents used to protect rice yield drop from pathogenicity and an account of unexplored areas, which might be taken into consideration to manage rice diseases. Rice (Oryza sativa L.), is the most important staple food of Asian countries. Rice production is significantly limited by a diversity of pathogens, leading to yield loss and deficit in current rice supply. Application of agrochemicals of diverse types has been considered as the only option to control pathogens and enhance rice production, thereby causing environmental concerns and making the pathogens resistant to the active ingredients. Increase in population and resistance of pathogen towards agrochemicals put pressure on the agronomists to search for safe, novel, eco-friendly alternative ways to manage rice pathogens. Inducing resistance in rice by using different biotic/abiotic agents provides an environmental friendly alternative way to effectively manage bacterial, fungal, and viral rice pathogens. In recent years, a number of protocols have been developed for inducing pathogen resistance by bio-priming of rice. However, a comprehensive evaluation of the potential of different biotic agents to protect rice crop loss from pathogens is hitherto lacking due to which the research on induction of defense against pathogens in rice is discontinuous. This review deals with the detailed analysis of the bacterial and fungal agents used to induce defense against rice pathogens, their mode of application, mechanism (physiological, biochemical, and molecular) of defense induction, and effect of defense induction on the yield of rice. It also provides an account of gaps in the research and the unexplored areas, which might be taken into consideration to effectively manage rice pathogens.


Assuntos
Oryza , Agroquímicos , Ásia , Resistência à Doença , Oryza/microbiologia , Doenças das Plantas/microbiologia
5.
J Basic Microbiol ; 60(6): 532-542, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32159865

RESUMO

Interaction of pretilachlor with photosystem (PS)-II of the cyanobacterium Desmonostoc muscorum PUPCCC 405.10 has been studied in this paper. Pretilachlor negatively affected growth, chlorophyll a (Chl a), photosynthesis, and carbon dissimilation in a dose-dependent manner. Effects were also observed in PSs, especially PS-II (an 11-35% decrease), as well as the whole photosynthetic electron transport activity. The fluorescence emission spectrum of Chl a revealed a dose-dependent effect of pretilachlor on both the antenna and the core complex of PSs, with more severe effect on the former. Data of O-J-I-P fluorescence transient of Chl a revealed that pretilachlor interfered with electron flow between QA and QB sites of PS-II. It was further observed that pretilachlor decreased maximum fluorescence, variable and relative variable fluorescence, maximum quantum yield, quantum yield of electron transport, the rate of trapped exciton movement, quantum yield of electron transfer, and performance index of primary photochemistry; however, there was a progressive increase in the net rate of PS-II closure, quantum yield of energy dissipation, and effective antenna size per active reaction center. A decrease in photosynthetic activity leads to a decrease in carbon dissimilation, as evidenced by low activity of glucose-6-phosphate dehydrogenase and pyruvate kinase. Thus, pretilachlor, which is otherwise known to kill weeds by interfering with cell division, affected the growth of the cyanobacteria by interacting with PS-II.


Assuntos
Acetanilidas/farmacologia , Cianobactérias/efeitos dos fármacos , Cianobactérias/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Bactérias/metabolismo , Clorofila A/metabolismo , Cianobactérias/crescimento & desenvolvimento , Transporte de Elétrons/efeitos dos fármacos , Fluorescência , Glicogênio/metabolismo , Fotossíntese/efeitos dos fármacos
6.
Nat Prod Res ; 32(6): 739-742, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28595453

RESUMO

The present study reports the chemical composition and antioxidant activities of the essential oil extracted from the leaves and tender branches of Hypericum gaitii Haines (Hypericaceae) - an endemic plant of Eastern India. On hydrodistillation, the fresh leaves and tender parts of H. gaitii yielded 0.43% (v/w) of pale yellowish essential oil. Gas chromatography mass spectrometry analysis revealed the presence of 40 compounds, which represent 96.9% of the total oil. Monoterpene hydrocarbons (79.3%) predominated followed by sesquiterpene hydrocarbons (12.6%). Of these, α-pinene (69.5%), ß-caryophyllene (10.5%), sabinene (5.6%), myrcene (3.0%) and geranyl acetate (2.0%) were the main constituents. Antioxidant activities of oil were evaluated by three different systems namely 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and reducing power assay. Essential oil exhibited moderate antioxidant activities compared to butylated hydroxytoluene (BHT) and ascorbic acid.


Assuntos
Antioxidantes/farmacologia , Hypericum/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Acetatos/análise , Monoterpenos Acíclicos , Antioxidantes/química , Monoterpenos Bicíclicos , Hidroxitolueno Butilado/análise , Cromatografia Gasosa-Espectrometria de Massas , Índia , Monoterpenos/análise , Óleos Voláteis/análise , Extratos Vegetais/química , Folhas de Planta/química , Sesquiterpenos Policíclicos , Sesquiterpenos/análise , Terpenos/análise
7.
Nat Prod Res ; 32(19): 2352-2355, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29179558

RESUMO

Physicochemical characteristics and fatty acid composition of Lasiococca comberi Haines (Euphorbiaceae), an endangered forest tree species, were determined for the first time. The oil, protein, crude fibre and carbohydrate contents in seeds were 41.5, 13.8, 22.2 and 11.6%, respectively. The refractive index, pH, specific gravity, saponification value, iodine value, peroxide value and p-anisidine value of seed oil were 1.4781, 6.4, 0.9, 178.4 mg KOH/g, 196 g I2/100 g of oil, 5.1 mEq O2/kg and 188.4, respectively. The predominant fatty acids were linolenic acid (65.3%), oleic acid (13.8%), linoleic acid (7.1%) and palmitic acid (5.3%). HPLC analysis revealed the presence of α-tocopherol (13.2 mg/100 g) and γ-tocopherol (6.3 mg/100 g) as the major tocopherols. The results indicated that L. comberi seed oil can be classified as drying oil having possible applications in different industries and as an important dietary source of omega-3 fatty acids.


Assuntos
Euphorbiaceae/química , Ácidos Graxos , Óleos de Plantas/química , Sementes/química , Ácidos Graxos/química , Ácidos Graxos Ômega-3 , Ácido Linoleico/análise , Ácido Oleico/análise , Ácido Palmítico/análise , Tocoferóis/análise , Ácido alfa-Linolênico/análise
8.
Environ Monit Assess ; 189(6): 258, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28478543

RESUMO

Tintinnid species distribution and hydrography were studied in the coastal waters of Digha during winter (November 2015) and summer (March 2016) seasons. Surface water samples were collected from 11 different stations from 0 to 10 km offshore with the help of a mechanized trawler. Parameters like tintinnid species enumeration, zooplankton biomass, phytoplankton concentration (total chlorophyll) and abundance, sea surface temperature (SST), pH, transparency, salinity, dissolved oxygen (DO), total phosphate, silicate and nitrate were analysed. A total of 20 different tintinnid species (16 agglomerated +4 non-agglomerated) belonging to 6 genera were recorded from the study area with seasonal variation in tintinnid diversity, i.e. higher in summer (total 2745 individual/l) compared to winter (total 1191 individual/l). Tintinnopsis was the most dominant genus during both the seasons, i.e. 2100 individual/l in summer and 727 individual/l in winter, contributing about 76 and 61% population for the respective seasons. The correlation between species and water quality parameters showed that Tintinnopsis sp. abundance was significantly regulated by nitrate concentration, salinity, dissolved oxygen, water transparency and pH. However, the mentioned hydrological parameters were not the only factors regulating the tintinnid abundance. Tintinnid abundance was also found to be positively related with transparency (r = 0.732) and salinity (r = 0.524) and moderately related with dissolved oxygen (r = 0.488) whereas strong negative relation (at p ≤ 0.05) was established between tintinnid abundance with nitrate (r = -0.681) and pH (r = -0.561). Bray-Curtis cluster analysis of tintinnid species showed more than 60% similarity. Shannon's diversity index (H'), Simpson's evenness index (D) and Margalef's species richness index were found to be higher in summer, i.e. 1.61, 0.729 and 1.612, compared to the winter season, i.e. 1.139, 0.597 and 1.268. k-dominance curve showed maximum abundance of Tintinnopsis baltica in winter and Tintinnopsis gracilis in summer. Principal component analysis (PCA) was analysed to find out the environmental variables affecting different tintinnid species diversity. A significant spatiotemporal variation in Tintinnid population distribution was observed from two-way ANOVA. The results reflect significant seasonal (F = 840.0), spatial (F = 47.3) and interactive variation (F = 71.2) among the ciliate microzooplankton at n = 66, p ≤ 0.001. High chlorophyll content and phytoplankton population in summer indicated that tintinnid diversity in the season was positively influenced by producer community in coastal waters of Digha.


Assuntos
Biodiversidade , Monitoramento Ambiental , Zooplâncton/classificação , Animais , Bangladesh , Baías , Biomassa , Clorofila/análise , Cilióforos/classificação , Cilióforos/crescimento & desenvolvimento , Nitratos/análise , Fitoplâncton/classificação , Fitoplâncton/crescimento & desenvolvimento , Salinidade , Estações do Ano , Temperatura , Zooplâncton/crescimento & desenvolvimento
9.
Photosynth Res ; 123(1): 105-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25209177

RESUMO

This paper deals with how Govindjee taught the Z-Scheme of electron transport in oxygenic photosynthesis at Ravenshaw University, Cuttack, Odisha, India, in 2014, in a unique and highly effective fashion-using students to act as molecules, representing the entire electron transport chain from water to nicotinamide adenine dinucleotide phosphate (NADP(+)). It culminated in a show by B.Sc. students in the garden of the Department of Botany, Ravenshaw University. The first author (PKM) personally acted as Ferredoxin NADP Reductase (FNR) catalyzing the reduction of NADP(+) to NADPH, taking electrons from reduced ferredoxin at the end of Photosystem I. On the other hand, the Q-cycle was played by M.Sc. students, who acted as molecules running this ingenious cycle that produces extra protons. An interesting event was when a student, acting as a herbicide, who was dressed like a devil (fierce looking, in black clothes with a sword; "Yamaraj: The God of Death", as he called himself), stopped all reactions by throwing out QB, the second plastoquinone molecule of Photosystem II, and that too aggressively, taking its position instead. The second author was the major organizer of the Z-scheme show. We provide here a basic background on the process, a bit on Govindjee's teaching, and some selected pictures from the drama played in March, 2014 at Ravenshaw University. Here, we also recognize the teacher Govindjee for his ingenious and fun-filled teaching methods that touched the hearts and the souls of the students as well as the teachers of Ravenshaw University. He was rated as one of the most-admired teachers of plant biology at our university.


Assuntos
Transporte de Elétrons/fisiologia , Fotossíntese/fisiologia , NADP/fisiologia , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Pigmentos Biológicos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...